Scholarship for master student Michal Hamkalo

Our master student Michal Hamkalo could secure the Scholarships for international students in the final stage of their degree funded by Bavarian State for his performance and scientific activity during Master studies in FAU.



Call for a professor (chair) position at Erlangen Physics Department

It is only indirectly related to our chair, but it's of great interest to us, which is why we mention it here: FAU invites applications for a new chair at the Erlangen Physics Department. More information can be found here. Applications ideally arrive before October 10, 2014.


group picture

April 2014


Publication on the laser acceleration experiment


Feb. 2014

Many experimental details on our succesful demonstration of electron acceleration with laser light at a dielectric grating have been published in an article in PR-STAB. The contribution, mainly written by John Breuer, was highlighted as "Editor's selection".

Publication in PR-STAB


ERC Consolidator Grant!


Dez. 2013

A research proposal sent to the European Research Council ERC for a Consolidator Grant has been approved! We were awarded 2 Million Euros to pursue the project "NearFieldAtto: Attosecond physics at nanoscale metal tips - strong field physics in the near-field optics regime". This is really perfect timing, as we can put the money to use right away in our recently renovated labs. The future will be exciting!

Press release of FAU (German)




Oct. 2013. Copyright The Economist, Dave Simonds.

The weekly news and international affairs publication "The Economist" is reporting in its current issue (Oct. 19, 2013) about our recent results on laser acceleration of electrons at a dieletric grating.

The Economist: Small really is beautiful -- by Jan Piotrowski




Oct. 2013

It's hard to believe: within two intensive weeks we have moved our labs from MPQ to Erlangen. The picture shows the first successful installation of a lab shelf hanging from the ceiling on top of an optical table. Despite initial concerns all were sitting on the shelf after a few moments -- installation complete!

Because of various joint projects, we will still be at MPQ and look forward to staying in touch with the old colleagues.


Dr. Krüger!

Dr. Micha

Oct. 2013

The fourth UQO member has received the Dr. title -- with distinction. Congratulations!!


PRL out on laser acceleration of electrons at a transparent grating


Sept. 2013

Our PRL on the laser acceleration of electrons at a transpartent grating is out! PRL featured it in a "Focus story". The large Indian newspaper "The Hindu" is reporting about the work. Links can be found below. The experiment's website can be reached via the project links on the left.

Physical Review Letters
PRL Focus: Accelerating electrons with light
Press release of the Max Planck Society
Claude Guthmann writes in French science blog MA VOIE SCIENTIFIQUE
Article in "The Hindu"


New measurement method for the otpical nearfield -- accepted for publication in Nano Letters

Sep. 2013

We have demonstrated a new measurement method for the optical near field enhanced at a pointy tip. The mehod relies on recollision physics: We utilize a photo-emitted electron, which is driven back to the tip by the local laser field, to measure the field strength of that exact field. We obtain the information simply from photo-electron spectra that display a rescattering plateau. These results have just been accepted for publication in Nano Letters -- congrats everyone!

Article published in Nano Letters

Dr. u.q.o. III !!

Aug. 2013

Also the third Dr. u.q.o. has obtained his title with great success -- congratulations, Dr. Breuer! During the defense the email from PRL arrived saying that one of the thesis manuscripts has been accepted for publication, see below. What a neat coincidence.

Dielectric laser acceleration of electrons -- PRL accepted

Dielectric Laser acceleration

Aug. 2013

Our manuscript demonstrating electron acceleration with the help of laser light at a dielectric (glass) grating structure has been accepted for publication by Physical Review Letters. We could demonstrate an acceleration gradient of 25 MeV/m, thereby reaching the regime that large accelerator labs such as DESY or SLAC operate at with classical machines. The interesting point about our approach is that for relativistic electrons the gradient exceeds 1 GeV/m, which could enable much more compact and hence cheaper accelerators. Most striking is that our results show that charged particles can be accelerated with the optical field -- one only needs a matching boundary condition, in our case a transparent grating structure. In addition, these results represent the first demonstration of the inverse Smith-Purcell effect in the optical regime.


Spectral Interferometry in strong-field physics

NJP Logo

July 2013

Jointly with Christian Ott, Thomas Pfeifer and other colleagues, we have investigated what spectral interferometry with carrier-envelope phase variation allows to extract from photon and electron spectra. The results have just been published in New Journal of Physics.

Heraeus School on Quantum Superposition

Logo der Wilhelm und Else Heraeus Stiftung

March 2013

Profs. Markus Arndt and Klaus Hornberger are organizing a Heraeus School on Quantum Superposition in Physikzentrum Bad Honnef (near Bonn) in May 2013. Application ends on March 24. We will present our experiments on matter wave interference on attosecond time scales and discuss in depth what we can learn from these results.

Quantum electron microscope project

Logo der Gordon and Betty Moore Foundation

Feb. 2013

The Gordon and Betty Moore Foundation, Palo Alto, has made it possible that an international group of physicists carries out research towards a new kind of electron microscopy. The groups of Fatih Yanik, Karl Berggren (both MIT), Mark Kasevich (Stanford), Pieter Kruit (TU Delft) and our group will join forces to exploit quantum effects to realize an electron microscope in which the electrons interact much less with the sample than in ordinary electron microscopes. With such a device one may take movies of what's going on in living cells. With current technology, the cell dies almost instantly. Quantum mechanics offers this possibility, but it's hard to realize. We will try anyway.

Special issue out

Titelblatt des Sonderhefts Annalen der Physik

Feb. 2013

Annals of Physics' special issue on "Ultrafast Phenomena on the Nanoscale" is out (see announcement of Feb. 2012 below; guest editors: Matthias Kling, Mark Stockman and Peter Hommelhoff). It comprises a collection of more than 25 articles and gives a comprehensive overview over the current status of this still young field of research. The special issue is freely available!

Dr. Hoffrogge!

Dr. Hoffrogge

Dez. 2012

Also the second Dr. u.q.o. has defended his dissertation with distinction -- congratulations, Dr. Hoffrogge! Title of the thesis: A surface-electrode quadrupole guide for electrons.

Theory and experiment go hand in hand -- twice

Rescattering of electrons

Aug. 2012

Together with our theory collaborators Georg Wachter, Christoph Lemell and Joachim Burgdörfer of TU Vienna, we could show that photo-emission from nanotips can be described with models well known from atomic physics, mainly the famous three-step model. For the first time, we, i.e., our friends from Vienna, employed a model able to describe metals to demonstrate the rescattering process. We compared data extracted from theory calculations with experimental data and found very good agreement. Furthermore, in a second publication, besides from a couple of neat experimental details, we could show that strong-field photo-emission from a nanotip can serve as an ideal toy laboratory to investigate strong-field effects. Because of the broken symmetry of the tip, a number of trajectory classes does not exist that exist in atoms, which makes the interpretation of data easier as compared to atoms.

MPG annual report contribution

Logo der Max-Planck-Gesellschaft

June 2012

Our recent results are summarized in a contribution to the 2011/12 annual report of the Max Planck Society. Dr. Olivia Meyer-Streng kindly contributed to writing this contribution -- thanks!

Dr. Schenk!

Dr. Schenk

March 2012

Markus Schenk has defended his doctoral dissertation with highest honors -- congratulations! Title of his thesis is: Strong field effects and attoseond dynamics in photoemission from metal tips.

10. Anniversary of attosecond physics: Special issue of J. Phys. B


March 2012

It's hard to believe, but attosecond physics has already turned 10. Journal of Physics B celebrates this anniversary with a special issue. Even though attosecond physics at sharp tips is less than one year old, we were invited to write a review abut this fast paced field. The result, together with the other anniversary contributions, have been published now.

Special issue on Ultrafast Phenomena at the nanoscale

Cover Sonderheft Annalen der Physik

Feb. 2012

In summer of 2012, a special issue of Annals of Physics will be closed that will give an overview of the whole, fast paced field of ultrafast phenomena at the nanoscale. We, Matthias Kling, Mark Stockman and Peter Hommelhoff, cordially invite contributions. Please follow the link if you are interested.

Rescattering physics at metal tip

Rückstreuung an Metallspitze

Jan. 2012

Together with our colleagues of Technical University of Vienna, we have investigated what exactly happens at the surface of our sharp metal tips if they are exposed to few cycle laser pulses. We investigate both theoretically and experimentally the process and observe that a part of the electrons that is emitted from the tip is driven back towards the metal surface. There electrons are scattered back and matter wave intereference effects arise (see image). The rescattering effect has so far not been observed off a metal surface. It might lead to a new method that allows measuring ultrafast surface dynamics.

UQO in October 2011

UQO Gruppenbild Oktober 2011

Two years after the previous group picture, it was time for another one: This is the UQOs as of October 2011 -- again with an honorary member.

NJP article with details and new ideas on microwave guiding of electrons

NJP Logo

Sep. 2011

In this article we consider in detail microwave fields needed to confine electrons in linear Paul traps. We find that propagation effects in long structures can have adverse effects on the trapping potential, to the extent that trapping is fully lost. We have found a solution to this problem and discuss it here. Enjoy reading!

The article is part of a nice NJP focus issue on matter wave optics and interferometry.

Trey B.!

John und Trey

Sep. 2011

Even though he couldn't start working full-time right away, Trey has apparently already inherited the hands-on approach of his dad's, John.

Nature article: Tip-based control of electrons on attosecond time scale

Eine Elektronen-Materiewelle wird von einer scharfen Wolframspitze durch einen Laserpuls emittiert und interferiert auf dem Weg zum Detektor mit sich selbst. Bild: C. Hackenberger. July 2011.

Eine Elektronen-Materie-
welle wird von einer
scharfen Wolframspitze
durch einen Laserpuls
emittiert und interferiert auf
dem Weg zum Detektor mit
sich selbst.
Bild: C. Hackenberger.
July 2011

Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laseremitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500 as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level.

This is how our article starts that has been published in the July 7, 2011 issue of Nature. Please find additional information by following the links below. Feel free to contact us if you would like to hear more or obtain high resolution images.

Phys. Rev. Lett. with results of Jakob's diploma thesis

Logo Physical Review Letters

Microwave cooling of
Josephson plasma
oscillations -- PRL,
July 2011

The results of Jakob Hammer's diploma thesis, which he did in Orsay, France, have been published in Physical Review Letters: Microwave cooling of Josephson plasma oscillations -- congratulations!

Frankfurter Allgemeine reports

FAZ Titelseite

Artikel in FAZ vom
May 18 2011

Germany's top newspaper "Frankfurter Allgemeine Zeitung" reported on our electron guiding results (see below) -- electrons seem to be appealing.

Electron guiding on PRL cover

Cover Physical Review Letters

May 2011

What a nice surprise! One of our figures made it on the PRL cover. Have a look on the right how great the picture looks if PRL's graphics editors get a hand on it. Below: our original.

Article on microwave guiding of electrons published in PRL

Guided Electrons

PRL zum Mikrowellen-
leiten von Elektronen --
erschienen inklusvie
May 2011

Our manuscript on the guiding of electrons in microwave fields just appeared in PRL (see also below: Electrons in microwave Paul trap). PRL selected it as "editor's choice for reading across fields" and recommends it scientists from other fields -- which we happily agree with.

In addition, our Vienna friends Jörg Schmiedmayer and Thorsten Schumm were invited by PRL to write a viewpoint on our paper. They nicely explain our work to non-experts and ponder thoughts on the future of the experiment. About 100 out of 16,000 annually published PRL articles receive this special highlighting.

Finest gold tips


Eine von Max'
scharfen Goldspitzen
-- Feb. 2011.

Sharp tips made of gold can be useful for plenty of applications -- to make them with high quality is not so simple though. Max Eisele, who recently did his diploma thesis with us, found a simple and benign recipe. Very recently, his publication appeared. On the right you can see such a tip under an optical microscope. The shiny surface indicates the smoothness and great surface quality.

Electrons in microwave Paul trap


Stabilitätsdiagramme. Dec. 2010

We have mapped out the stability region for guiding of electrons in our microwave guide. This together with the idea to directly inject electrons into the transverse ground state of the electron guide, and more we have just submitted for publication. Please go to "Publications" to follow the link to the arXiv to have a look into the manuscript.

ATP manuscript accepted at Phys. Rev. Lett.

Logo Physical Review Letters

Nov. 2010

Our manuscript on above-threshold photoemission and strong-field effects in electron emission from sharp tips has been accepted at Physical Review Letter -- great!

Physics Highlight

APS Physics Logo

Sep. 2010

Our article describing a new and comparatively simple model to compute and optimize laser amplification was selected as physics highlight by the American Physical Society.

Above-threshold photoemission und strong-field effects

Above-threshold photoemission und Starkfeld-Effekte

ATP und Stark-Feld-Effekte.

We did energy-resolved measurements of electrons emitted with a few-cycle laser oscillator from a sharp metal tip. We observe that the electrons are emitted with energies much higher than needed to just overcome the potential barrier. This effect is called above-threshold photoemission (ATP). We observe electrons with energies corresponding to up to six photons above the threshold in clear spectra (see figure). When we increase the laser intensity we observe that the lowest-order peak is becoming suppressed, and also that all features of the spectrum are shifted towards smaller energies. Both of these effects are a result of the interaction of the emitted electrons with the laser field: in higher laser intensities the electrons not only need to provide the energy to overcome the barrier but also the wiggle-energy in the laser electric field. This effect can be elegantly described in the so-called dressed-state picture, in which the electronic continuum state is dressed with the light field and is thus light-shifted. We have submitted a publication. A preprint can be found under "publications". Sept. 2010.

Electron guiding works in novel microwave guide

Microwave guiding of electrons

Elektronen am Aus-
gang des Wellenleiters
(roter Kreis).

A new waveguide for electrons works! We could guide electrons through a two-dimensional trapping potential that was generated with microwave electric fields, a so-called 2d Paul trap. The 2d-trap is generated above a planar substrate with the help of coplanar waveguide structures. July 2010.

Single-pass laser amplification

Tapered-shell model

Tapered-shell model, Summer 2010

We finished a series of experiments on single-pass laser amplification of pulses of a Titanium:sapphire laser in another Titanium:sapphire crystal with a couple of publications. Last we came up with a new model to calculate and numerically optimize the experimental parameters for such experiments, the Tapered-shell model. The paper just came out, see publications.

UQO group as of fall 2009

UQO Gruppenbild Oktober 2009

Members of the UQO group, including one honorary member.

Welcome John!

John Breuer has joined our group. He will be working on acceleration of electrons with laser light. Aug. 2009.

Single-pass amplifier


White light generation

Together with Akira Ozawa, Waldemar Schneider und Thomas Udem we recently set up and characterized a cryogenic single pass amplifier for ultrashort Titanium-sapphire laser pulses. This amplifier helps in reaching peak powers exceeding 2MW with sub-8-fs laser pulses at the full oscillator repetition rate of 80 MHz -- all this in a phase stable manner. The power is so high that we were able to efficiently drive a highly-nonlinear process at the full oscillator repetition rate; we demonstrated white-light generation at close to 100 MHz. The crystal was kindly provided by the Riedle group, and the results are published in New Journal of Physics. Spring / summer 2009.

Cooperation with Peter Fierlinger of Munich Universe Cluster

Aufbau Laser

Gerd und Jo

Due to a cooperation with Peter Fierlinger of Munich Universe Cluster we set up the first laser in our lab. Our femtosecond laser is currently running next door -- why: soon to come. November 2008.

Lab warming party

Lab Warming Party

Summer 2008

Lab warming party for all those who were part of the remodeling -- keeping fingers crossed was considered supportive action.

Lab remodeling II


June 2008

Renovation took a while (and still is), but we can move in the lab now. Doesn't it look good?

First grad students -- April 08

Welcome Markus and Johannes!

Lab remodeling

Neues Labor

Feb. 2008

The lab is anything but ready -- anyways, we are starting.